戴氏双师课程特点
科学课程体系动态分层+阶段培养
语文课程:落实基础板块,改变阅读习惯、增强答题能力,加强中考及自招答题的实战训练。
数学课程:加强分类讨论数、数形结合学思想方法的应用,及几何图形解题的判定和推理。对各重点高中的中考及自招典型试题进行实操演练。
英语课程:巩固主要语法知识点,扩大词汇量,掌握阅读、翻译、写作技巧,熟悉中考及自招的考试。
物理课程:梳理重点知识板块,加强知识点拓展练习,强化解题的综合运用能力。
化学课程:学习初三各知识点内容,巩固并加强重点难点,训练灵活解题思路。
初一数学那怎样才能打好初一的数学基础呢?
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我的建议是:“总结归纳”是将题目越做越少的好办法。
(3)收集自己的典型错误和不会的题目
同学们难面对的,就是自己的错误和困难。但这恰恰又是需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)不懂的问题,要积极提问、讨论
初中补习班提高学习能力。
学习能力的三要素又可分为八大学习环节,即学习管理八环节:1。计划管理;2。预习管理;3。听课管理;4。复习管理;5。作业管理;6。错题管理;7。难题管理;8。考试管理
一、计划管理----有规律
1、长计划,短安排。在制定一个相对较长期目标的同时,一定要制定一个短期学习目标,这个目标要切合自己的实际,通过努力是完全可以实现的。达到了一个目标后,再制定下一个目标,确保一个目标一个目标的实现。
2、挤时间,讲效率。重要的是进行时间上的通盘计划,制定较为详细的课后时间安排计划表,课后时间要充分利用,合理安排,严格遵守,坚持下去,形成习惯。计划表要按照时间和内容顺序,把放学回家后自己的吃饭、休息、学习时间安排一下,学习时间以45分钟为一节,中间休息10分钟,下午第四节若为自习课也列入计划表内。
二、预习管理----争主动
1、读:每科用10分钟左右的时间通读教材,对不理解的内容记录下来,这是你明天上课要重点听的内容。预习的目的是要形成问题,带着问题听课,当你的问题在脑中形成后,第二天听课就会集中精力听教师讲这个地方。所以,发现不明白之处你要写在预习本上。
2、写:预习时将模糊的、有障碍的、思维上的断点(不明白之处)书写下来。
3、练:预习的高层次是练习,预习要体现在练习上,就是做课后能体现双基要求的练习题1到2道。做题时若你会做了,说明你的自学能力在提高,若不会做,没关系,很正常,因为老师没讲。
初中数学学习方法:代数式
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,
(6)
a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2
倘若就我们的学习喻作航船,勤奋则是轮船的马达;正确的学习方法便是轮船的方向盘与航线、让我们驾上这艘希冀之船在知识的海洋中园游,让船儿载着我们驶向美好吧!