戴氏精品堂好老师让孩子进步更轻松,优选骨干菁英学科带头人,层层把关教学质量
高学历+高能力:来自全国各地的优秀老师,其中不乏有多年公立学校经验的好老师
紧抓考点、考纲:亲历命题、阅卷,熟悉答题技巧,敏锐洞察考察方向
懂学生懂家长:常年接触各类学生,解决学生各种问题,理解家长心情,协助家长与孩子顺利沟通
总结划分背诵重点梯度.这是什么意思呢?意思是考生必须根据考纲,老师平时的重点划分,以及多次考试和对往年高考试题的分析,自己对政治重点知识有一定的把握。并将所有的政治知识点进行一个梯度划分,即哪些是必须背诵掌握的,哪些是知道了解的,哪些是可以一眼带过的。只有通过这样的划分,才能将时间与精力都花在“刀刃”上,获得大的价值。
高考数学知识点:轨迹方程的求解
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代
换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
视频解析:轨迹方程的求解(1) (2) (3) (4)
多年的教学实践和科学研究发现,凡是学习成绩优异的学生,都很重视学习的调整,调整包括对学习目的、学习态度、学习计划、学习方法的调整。通过调整,学习目的明确了,态度端正了,计划合理了,方法科学了,时间的分配和精力的使用恰当了,学习就会不断取得进步,学习成绩自然也就提高了.