戴氏精品堂名师一节课,胜庸师无数,4层严控,通过比例26:1,专为成绩提升而来
证-资质认证:严格审查学历认证、教师资格、专业资质考
考-考核评审:通过5个层级,16个维度对老师进行严格评审控
控-质量控制:实施动态监督,老师定期培训,成长升级
初中数学辅导
查自己欠缺的知识
关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在中考答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。
心态问题
走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
反过来,如果进考场就底气不足,必定会影响自己的发挥。就是平常日学习不好,也不要紧,初中升高中知识人生的一段旅程,不是人生的终点。只要你努力了,人生处处是起点……只要你消极,人生处处是终点。
审题很关键
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?
能不能从中获得解题的思路?找到进门的门槛?
(6)能不能先从已知条件导出某些有用的东西?
(7)观察整个题目,联想我自己过去做过的题。
我是否做过与此有关的问题?是否做过表面上不同,实际上类似的问题?这个题目是由见过他们是如何求解的?
“别拿村长不当干部”
要更加重视自己会做的题目:中考考试重要的是“不怕不会,就怕不对”。
初二数学学习方法:重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中重要的数量关系是等量关系,其次是不等量关系。常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
初二数学学习方法:“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
might
might为may的过去式。might表示推测时,表示可能性低于may(此时might没有过去式的意思),当请求讲时,比may的语气更委婉。
He is away from school。 He might be sick。
M
ight I use your dictionary?