戴氏教育严选师资,好老师=好成绩,均有5年以上高考毕业班带班经验
更懂学生:横扫学生知识盲点,细致耐心解答学生问题
更懂考试:熟悉考点、命题趋势、同步考点学习
更懂提分:精通历年考点重点、熟悉掌握命题趋势
八年级培训政治学习法
夯实基础
中考思想品德反对死记硬背,强化考查学生理论联系实际的应用能力,降低了识记的题量和分值,但不是不要求识记,更不是削弱对基础理论知识的考查。能力的考查中蕴涵着知识的掌握和运用。更何况,在目前的政治试题中,75%以上的测试点仍是直接考查学生对所学基础知识的识记、理解和运用。开放性试题的答案的根在教材中,只是需要考生按命题要求对教材知识进行重新组织罢了。基础知识是能力的前提和基础,能力是基础知识的提高和升华,离开基础知识谈能力,便是无源之水、无本之木。
所以,在中考政治复习时,应以《课程标准》(修订)为纲,以《考试说明》为“据”,以政治教材为“本”的指导思想,将重点放在考试说明指导下对课本有关内容的学习上,对考点全面复习,掌握政治学科的基础知识,不厚此薄彼。只有抓好基础知识的复习,方可保证基础题不丢分,中档题少丢分,较难题争取多得分。
课后小结
考试过后进行学会小结,有助于学生今后学习成绩的提高。每次卷子发下来,就要弄清每个类型考题得失的分数。如选择题得失分数,辩析题得失分数,分析说明题得失分数等。并重点弄清失分的原因:是知识和能力方面,如对基本概念和基本观点的理解、记忆是否正确,解题的思路和方法是否得当,还存在哪些不理解的问题等;还是心理状态方面,如答卷前的心理状况如何,是由于过度紧张将复习过的内容忘记了造成失分,还是由于粗心大意造成失分等;或是学习方法方面,如复习是否抓住了重点,老师讲解时是否做了笔记等。如若是基础知识掌握得不好,就应加强这方面的复习,夯实基础知识;若是解题思路和方法上还有欠缺,就应有针对性地加强这方面的训练等。
课堂笔记
常言道,好记性不如烂笔头,不动笔墨不读书。告诉学生学习时应勤做笔记。学习中对比较抽象的问题,如观点、概念及概念间的关系等,理解起来往往有一定的难度,指导学生听课时好将老师讲解这方面的具体事例记下来。相对而言,每个人的思维在广度或深度上都存在不足,在对某个问题的理解上都可能不够全面。因此,要求学生在听老师进行全面讲解时要记自己还没认识到的方面。特别是要记下如何审题、如何分析、如何同教材知识联系等方法与技巧。如有的学生不知怎样解答漫画题,老师在讲解这方面的技巧时,就要求记下来,第一步弄清漫画的寓意,第二步结合教材知识分析漫画所包含的道理,第三步思考自己应坚持什么观点,第四步根据题目要求组织好答案。
初二数学学习方法:重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中重要的数量关系是等量关系,其次是不等量关系。常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
初二数学学习方法:“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去
它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
在学习科学知识的过程中,我们还应该重视实验,注意把所学的科学知识与日常生活、生产中的现象结合起来,其中也包含与科学实验现象的结合,因为大量的科学规律是在实验的基础上总结出来的。作为一个刚开始学习科学的初中学生,要认真观察教师的演示实验,并独立完成学生的动手操作实验。
面积法的常用理论口诀
1.三角形的中线把三角形分成两个面积相等的部分。
2.同底同高或等底等高的两个三角形面积相等。
3.平行四边形的对角线把其分成两个面积相等的部分。
4.同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5.三角形的面积等于等底等高的平行四边形的面积的一半。
6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4
7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4
8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。